
Segregated Handling Practices and Facility Design Needs for Identity Preservation of Grains & Oilseeds

Dr. Dirk E. Maier, Ph.D., P.E. Extension Agricultural Engineer Post-Harvest Education & Research Center Purdue University www.GrainQuality.org

Current Quality Grain Dilemma

Avoidance of transgenic characteristics

vs.

Promotion

of special end use characteristics

The New EU Labeling and Traceability Law

- All foods produced from GM-grains & oilseeds whether or not there is DNA or protein of GM origin in the final product
 - Current labeling requirements will be extended to cover <u>food</u> containing soya or corn oil produced from GM-soya or GM-maize, and <u>food ingredients</u> produced from GM-grains
 biscuits with corn oil produced from GM-maize
- All feeds produced from GM-grains & oilseeds will be required to be labeled.

The New EU Labeling and Traceability Law

- The <u>labeling threshold</u> for the presence of GM material in conventional food is 0.9%
 - currently 1%
 - must be adventitious and technically unavoidable
- The <u>tolerance threshold</u> for the adventitious presence of GM material in food and feed not yet authorized will be 0.5%
 - currently 0%
 - must have received favorable EU scientific risk assessment
 - must be technically unavoidable

Future Quality Grain Challenge

Assure *Quality*

and retain

Economies of Scale

Efficiencies of Operation

Regulated Uses	Plant-made Industrial Products (PMIP) Federally-regulated (permitting, licensing, auditing)
	Plant-made Pharmaceutical Federally-regulated (permitting, licensing, auditing)
All Uses	Organic grains IP production, handling and transport (Federal standards) Non-biotech grains Varies depending on the standards) White & yellow Relies on current commodity infrastructure
PRODUCTION	High oil & Relies on current commodity infrastructure New value added
	Tofu/miso food soybeans in production, nandang, and transport (Industry standards)

Definition of Grain Quality

- Physical quality
 - outward visible appearance or measurement of kernel
 size, shape, color, moisture, damage, density
- Sanitary quality
 - cleanliness and purity of the grain
 - foreign material, dust, broken grain, other grain or genetic material, rodent excreta, insects, residues, fungal infection
- Intrinsic quality
 - critical characteristics for grain end use that are non-visual and can only be determined by analytical tests
 - protein, starch, oil

Definition of Purity

Crop *purity* refers to the amount of grain as a percent of the total lot that is of the same genetic material.

Quality Grains Definition

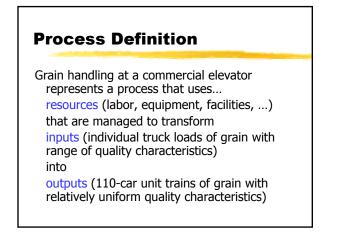
Grains & oilseeds that meet *end user specifications* with respect to a range of <u>pre-determined quality characteristics</u> that are confirmed for final end use at the first point of sale with a *product verification* approach to quality management.

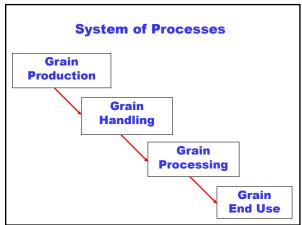
Quality Assured Grain

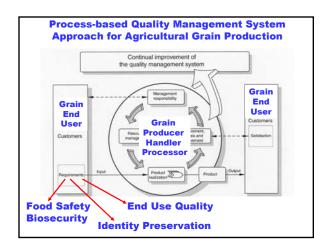
Purity and Quality of Grain are affected by:

- Seed selection
- Agronomic practices
- Environment during growth
- Timing and system of harvesting
- Post-harvest handling and drying treatment
- Storage structures and practices
- Transportation system and procedures

Quality Determination


Product Verification at the first point of sale


vs.


Process Verification from field to end use

Quality Assured Grains Definition

Grains & oilseeds that meet *end user specifications* with respect to a range of production and handling practices and pre-determined quality characteristics that are confirmed and documented from seed to final end use with a *process verification* approach to quality management.

Quality Management Systems Approach

ISO standards promote the adoption of a *process approach* when developing, implementing and improving the effectiveness of a quality management system in order to enhance customer satisfaction by meeting (or exceeding) customer requirements.

Quality Management Systems Approach

The basic principle is:

"Say what you do, do what you say, and prove it!"

Quality Assurance Programs

- ISO 9000 series activities
 - ISO tracking system using Iowa Crop Management Database for Innovative Growers LLC
 - Grain Industry ISO Projects
 - CGB, Farmland, ConAgra, ADM, Farmers Cooperative...
 - Ag9000 Working Group
 - AG9000 Quality Management System Standard
 - similar to ISO 15161 "Guidelines on the Application of ISO9001:2000 for the Food and Drink Industry"
 - American Society of Agricultural Engineers (ASAE)

Quality Assurance Programs

- Association of Official Seed Certifying Agencies (AOSCA)
 - Identity Preservation (IP) Certification
 - Indiana Crop Improvement Association
- American Institute of Baking
 - AIB Gold Standard Certification Program
 - Quality Evaluation System
- American Feed Industry Association
 AFIA Feed Quality Institute
- USDA Federal Grain Inspection Service
 Process Verification Program (PVP)

AIB QSE Example: Iowa Grain Firm

- Training
- Job descriptions; work procedures
- Documentation
- Assure systematic follow through of all functions
- Statistical Performance Evaluation
- Monitor performance of in-house grading vs. official FGIS grades
 Programmed Corrective Action
- Employees expected & authorized to respond to situations
 Inventory Information
- Tracking of inbound grain through storage and to shipping
- Employee Confidence & Professionalism
 Improved job performance & satisfaction
- Food Grade Mindset
 - Handling grain & oilseeds as food ingredients

Benefit-Cost Summary for QMS at an Iowa Grain Firm (Hurburgh 2003)

Operation	Cost Savings
Grading	\$1085
Inventory Control	\$10675
Operational Efficiency	\$2180
Regulatory Compliance	\$5300
Employee Development	\$3400
Total Benefits	\$22640
Cost of QMS	\$11250
Benefit-Cost Ratio	2:1

Critical Control Points (CCP) for Successful QA Program

Land Requirements

- know whether a GM/E crop that produces seed was grown on the field the previous season(s)
- maintain maps with field identities and locations

Original Seed Purity

- only buy seed from a known source
- keep invoice with hybrid/variety name and lot numbers
- only buy certified seed that has been GM/E-tested
 - 0.375 % of seed samples tested positive for GM traits
 IN Seed Commissioner, Larry Nees: "3 out of 800 samples"

Critical Control Points (CCP) for Successful QA Program

Planters

- plant non-GM/E crop ahead of GM/E crop
- run planter boxes empty and vacuum if necessary
- thoroughly clean out seed metering mechanism
- calibrate seed metering mechanism

Cross-Pollination in Corn

- plant non-GM/E and GM/E crop at different dates
 follow field isolation recommendations to minimize cross-pollination potential
- conduct field inspections during and after pollination period to determine possible isolation problems

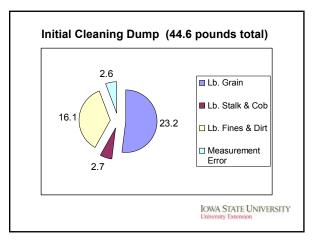
Equipment Management Alternatives

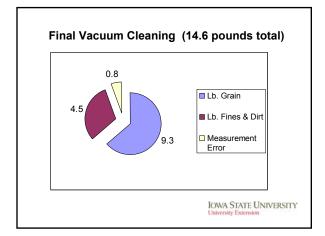
- A strict *cleanout* program for each piece of equipment that handles or processes seed or grain
- Field operation planning to prevent contamination during planting, harvesting and handling
- 3. Use of *dedicated equipment* for planting, harvesting and handling a particular crop

Equipment Management Essentials

- If the *cleanout* strategy is selected:
- strive for absolute cleanliness
- remove any potential contaminants from each piece of seed and grain handling equipment prior to handling any grain, and when switching crops
 - Clean+Flush Strategy

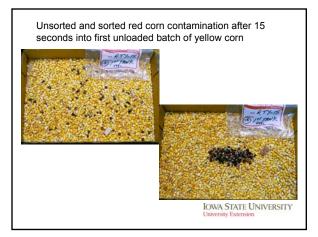
Equipment Management Essentials

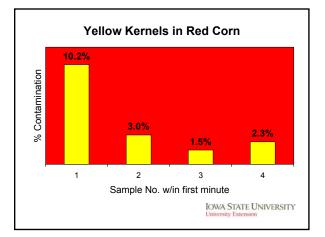

If the *operation planning* strategy is selected:

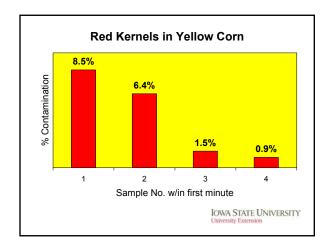

- **all** of one crop must be planted, harvested and handled before the next crop
 - FIF-FOF Strategy
- in-season cleanout can be avoided

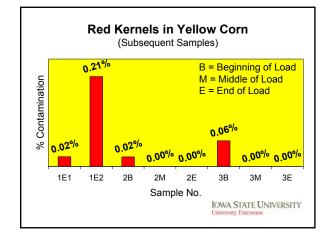
Equipment Management Essentials

- If the *dedicated equipment* strategy is selected:
- a **clean** machine must plant, harvest and handle only one type of crop throughout an entire season
- in-season cleanout can be avoided

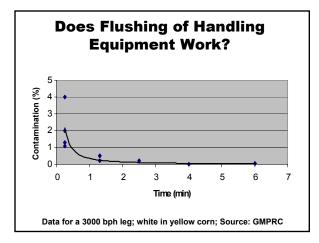







Critical Control Points (CCP) for Successful QA Program

- Combine Harvester
 - typically ~1-3 bu remain
 - harvest non-GM/E varieties ahead of GM/E ones
 - run combine empty & blow out carry-over material
 - run tank empty & clean-out with compressed air
 - use compressed air to blow out kernels on any ledges throughout threshing and cleaning units
 - open inspection door on bottom of clean grain auger & clean-out hung-up kernels
 - flush combine with initial half tank (100-150 bu) from non-GM/E field & discard grain into separate wagon
 - modify combine for easier clean-out



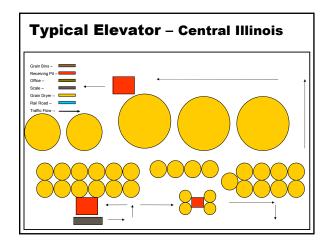
Seed	0.50%
Planting	0.01%
Pollination	0.50%
Combine harvester	0.02%
Grain cart	0.01%
Truck	0.01%
Receiving pit	0.1%
Elevator leg (wet)	0.1%
Wet holding hopper bin	0.01%
Dryer	0.1%
Elevator leg (dry)	0.1%
Cleaner & distributor	0.1%
Downspout & cushion box	0.01%
Storage bin	0.01%
Jnderfloor unload auger	0.1%
Take-away unload auger	0.1%
Elevator leg (dry)	0.1%
Cleaner & distributor	0.1%
Downspout & cushion box	0.01%
.oad-out hopper bin	0.01%
Truck	0.01%
Accumulated varietal mixture	2.01%

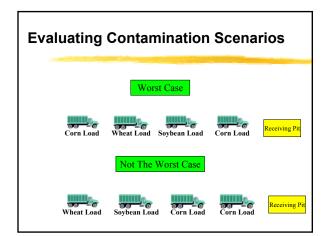
Seed	0.50%
Planting	0.01%
Pollination	0.50%
Combine harvester	0.02%
Grain cart	0.01%
Truck	0.01%
Portable belt conveyor	0.01%
In-bin dryer & storage bin	0.01%
Underfloor unload auger	0.1%
Portable belt conveyor	0.01%
Truck	0.01%
Accumulated varietal mixture	1.19%

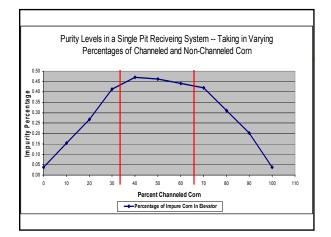
Potential reduction in contamination with dedicated handling, drying and storage equipment = 2.01 - 1.19 = 0.82, or 41%

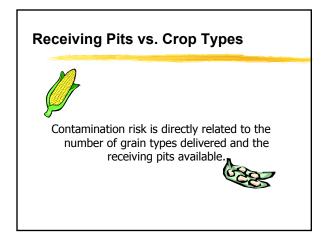
Critical Control Points (CCP) for Successful QA Program

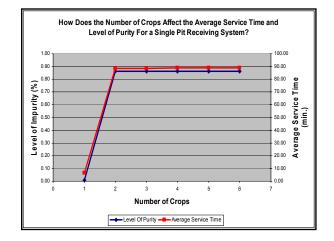
- Probing and Grading of Bulk Grain
 - make sure probe is empty and clean before probing a truck
 - make sure grading equipment is clean
 - consider second station equipment dedicated for non-GMO
 - to prevent accidental mixing avoid dumping sample from previous truck back into following truck
 watch out for mixed samples in discard barrel
 - follow consistent probing pattern to get
 - representative sample

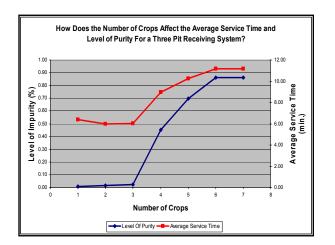

Critical Control Points (CCP) for Successful QA Program

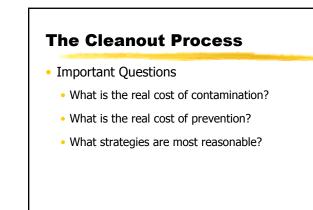

- Sampling and Testing of Bulk Grain
 - large & representative sample absolutely critical
 5-10 lb sample
 - rough grind and divide
 - only a *few grams* are analyzed
 - sampling error potential for biotech traits similar to mycotoxins
 - aflatoxin, fumonison, vomitoxin
 - follow test kit instructions
 2-3 tests/sample
 - understand result interpretation
 - · 25-50% false positives due to single kernel event


Contract Specs (%)	Biotech (%)	Mean (%)	Actual Range (%)	Tests <1.0%
1.0	0.9	0.7	0 - 1.9	77
1.0	1.1	0.9	0 – 2.3	66
1.0	0.5	0.4	0 - 1.3	95
1.0	1.5	1.2	0 - 3.2	52
*Range based	I on mean +/-	2 s.d.	1	1
				Source: G


Impact of Inaccurate & Imprecise


Biotech Traits Testing





Realistic Strategies for Maintaining Crop Quality & Purity

- Harvest, Transport and Handling Planning
 Implement an all-in, all-out harvest, transport & handling management program (FIF-FOF)
- Handling Equipment Cleaning & Flushing
 Implement a cleaning & flushing program
- Dedicated Handling Equipment
 Dedicate a particular piece of handling equipment (or system) to a particular category of crop

Our Goal:

A quality grain management system must be based on *least cost* and *most efficient best agricultural practices* that result in *consistent quantities* of *quality-assured* grains and oilseeds to *maximize the margins* of producers, handlers and processors.

